# Math 217 Fall 2025 Quiz 31 – Solutions

## Dr. Samir Donmazov

1. Complete\* the partial sentences below into precise definitions for, or precise mathematical characterizations of, the italicized term.

Let V be a vector space and let  $T: V \to V$  be a linear transformation.

(a) A vector  $v \in V$  is an eigenvector of T if ...

**Solution:** A vector  $v \in V$  is an eigenvector of T if  $v \neq 0$  and there exists a scalar  $\lambda \in \mathbb{R}$  such that

$$T(v) = \lambda v.$$

(b) A scalar  $\lambda$  is an eigenvalue of T if . . .

**Solution:** A scalar  $\lambda \in \mathbb{R}$  is an eigenvalue of T if there exists a nonzero vector  $v \in V$  such that

$$T(v) = \lambda v.$$

2. Suppose V is a vector space and  $\{v_1, v_2, v_3, v_4\}$  is a set of vectors that spans V. Show: If  $w \neq 0$  is another vector in V, then we can find  $j \in \{1, 2, 3, 4\}$  such that the set

$$\{w, v_k \mid k \in \{1, 2, 3, 4\} \setminus \{j\}\}$$

spans V.

**Solution:** Consider the set of five vectors

$$\{w, v_1, v_2, v_3, v_4\}.$$

Since  $\{v_1, v_2, v_3, v_4\}$  spans V, the dimension of V is at most 4. Therefore any list of 5 vectors in V is linearly dependent. Thus there exist scalars  $a, b_1, b_2, b_3, b_4$ , not all zero, such that

$$aw + b_1v_1 + b_2v_2 + b_3v_3 + b_4v_4 = 0.$$

Because  $w \neq 0$ , we may assume  $a \neq 0$ ; otherwise we would get a nontrivial linear dependence among the  $v_i$  alone and could simply remove one of them. Solving for w,

$$w = -\frac{b_1}{a}v_1 - \frac{b_2}{a}v_2 - \frac{b_3}{a}v_3 - \frac{b_4}{a}v_4.$$

<sup>\*</sup>For full credit, please write out fully what you mean instead of using shorthand phrases.

At least one  $b_j$  is nonzero. Choose such a j. Solve instead for  $v_j$ :

$$v_j = -\frac{a}{b_j}w - \sum_{k \neq j} \frac{b_k}{b_j} v_k.$$

Thus  $v_j$  lies in the span of  $\{w\} \cup \{v_k : k \neq j\}$ . Since  $\{v_1, v_2, v_3, v_4\}$  spans V, replacing  $v_j$  with w yields another spanning set:

$$\{w, v_k \mid k \neq j\}$$
 spans  $V$ .

- 3. True or False. If you answer true, state TRUE. If you answer false, state FALSE. Justify your answer with either a short proof or an explicit counterexample.
  - (a) Suppose V is a vector space,  $v \in V$ , and  $\lambda \in \mathbb{R}$ . For a linear transformation  $T: V \to V$ , if  $T(v) = \lambda v$ , then  $T(T(v)) = \lambda^2 v$ .

## Solution: TRUE.

Using linearity,

$$T(T(v)) = T(\lambda v) = \lambda T(v) = \lambda(\lambda v) = \lambda^2 v.$$

(b) Suppose V is a vector space,  $v \in V$ , and  $\lambda \in \mathbb{R}$ . For a linear transformation  $T: V \to V$ , if  $T(T(v)) = \lambda^2 v$ , then  $T(v) = \lambda v$ .

#### Solution: FALSE.

Counterexample: Let  $V = \mathbb{R}$ , define T(x) = -x, and let  $\lambda = 1$ . Take v = 1. Then

$$T(T(1)) = T(-1) = 1 = \lambda^2 v.$$

But

$$T(1) = -1 \neq 1 = \lambda v.$$

Thus the implication fails.

(c) Suppose V is a vector space. The subspace

$$E_{\lambda} = \{ v \in V : T(v) = \lambda v \}$$

is nonzero if and only if  $\lambda$  is an eigenvalue of T.

### Solution: TRUE.

- $(\Rightarrow)$  If  $E_{\lambda}$  contains a nonzero vector v, then  $T(v) = \lambda v$  with  $v \neq 0$ . By definition,  $\lambda$  is an eigenvalue.
- ( $\Leftarrow$ ) If  $\lambda$  is an eigenvalue, then by definition there exists a nonzero v with  $T(v) = \lambda v$ , so  $v \in E_{\lambda}$  and the subspace is nonzero.

(d) Every finite dimensional inner product space  $(V,\langle\,,\,\rangle)$  has an orthonormal basis.

## Solution: TRUE.

Given any basis of V, apply the Gram–Schmidt process using the inner product  $\langle \ , \ \rangle$  to obtain an orthonormal basis of V.